Return to search

Evolutionary analysis of the relaxin peptide family and their receptors

The relaxin-like peptide family consists of relaxin-1, 2 and 3, and the insulin-like peptides (INSL)-3, 4, 5 and 6. The evolution of this family has been controversial; points of contention include the existence of an invertebrate relaxin and the absence of a ruminant relaxin. Using the known members of the relaxin peptide family, all available vertebrate and invertebrate genomes were searched for relaxin peptide sequences. Contrary to previous reports an invertebrate relaxin was not found; sequence similarity searches indicate the family emerged during early vertebrate evolution. Phylogenetic analyses revealed the presence of potential relaxin-3, relaxin and INSL5 homologs in fish; dating their emergence far earlier than previously believed. Furthermore, estimates of mutation rates suggested that the expansion of the family (i.e. the emergence of INSL6, INSL4 and relaxin-1) during mammalia was driven by positive Darwinian selection. In contrast, relaxin-3 is constrained by strong purifying selection, implying a highly conserved function. (For complete abstract open document)
Date January 2006
CreatorsWilkinson, Tracey Nicole
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish
RightsTerms and Conditions: Copyright in works deposited in the University of Melbourne Eprints Repository (UMER) is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only, download, print, and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works., Open Access

Page generated in 0.0166 seconds