Return to search

Discovery of the novel mouFSnrp gene and the characterisation of its in situ expression profile during mouse neurogenesis

Recently, a novel protein family, named as neural regeneration peptides (NRPs), was predicted across the rat, human and mouse genomes by one of my supervisors, Dr. Sieg. Synthetic forms of these proteins have been previously shown to act as potent neuronal chemoattractants and have a major role in neural regeneration. In light of these properties, these peptides are key candidates for drug development against an array of neurodegenerative disorders. The aim of this PhD project was to provide confirmation of the existence of a member of the NRP coding gene family, annotated in the mouse genome. This gene, called mouse frameshift nrp (mouFSnrp), was hypothesised exist as a -1bp frameshift to another predicted gene AlkB. This project involved the identification of the mouFSnrp gene, and the characterisation of its expression pattern and ontogeny during mouse neural development. Through the work described in this thesis, the mouFSnrp gene was identified in mouse embryonic cortical cultures and its protein coding gene sequence was verified. mouFSnrp expression was shown to be present in neural as well as non-neural tissues, via RT-PCR. Using non-radioactive in situ hybridisation and immunohistochemical colocalisation studies, interesting insights into the lineage and ontogeny of mouFSnrp expression during brain development were revealed. These results indicate that mouFSnrp expression originates in neural stem cells of the developing cortex, and appears to be preferentially continued via the radial glial lineage. mouFSnrp expression is carried forward via the neurogenic radial glia into their daughter neuronal progeny as well as postnatal astrocyte. In the postnatal brain, mouFSnrp gene transcripts were also observed in the olfactory bulb and the hippocampus, both of which are known to have high neurogenic potential. In general, the radial glial related nature of mouFSnrp expression appears to be a hallmark of the mouFSnrp expression pattern through out neural development. This thesis provides the first confirmation of the existence of a completely novel gene, mouFSnrp, and its putative -1 translational frameshifting structure. Further, preliminary data presented in this thesis regarding the mouFSnrp in situ expression pattern during mouse brain development may suggest a key role of the gene in neuronal migration and neurogenesis in mice. / FRST Bright Futures Enterprise Fellowship

Identiferoai:union.ndltd.org:ADTP/247396
Date January 2007
CreatorsBradoo, Privahini
PublisherResearchSpace@Auckland
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsItems in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated., http://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm, Copyright: The author

Page generated in 0.0026 seconds