Return to search

Transmission power control in body-wearable sensor devices for healthcare monitoring

Emerging body-wearable sensor devices for continuous health monitoring are severely energy constrained and yet required to offer high communication reliability under fluctuating channel conditions. This thesis aims at investigating the opportunities and challenges in the use of dynamic radio transmit power control for prolonging the lifetime of such devices. We first present extensive empirical evidence that the wireless link quality can change rapidly in body area networks, and a fixed transmit power results in either wasted energy (when the link is good) or low reliability (when the link is bad). We then propose a class of schemes feasible for practical implementation that adapt transmit power in real-time based on feedback information from the receiver. We show conservative, balanced, and aggressive adaptations of our scheme that progressively achieve higher energy savings of 14%-30% in exchange for higher potential packet losses (up to 10%). We also provide guidelines on how the parameters can be tuned to achieve the desired trade-off between energy savings and reliability within the chosen operating environment. Finally, we implement and profile our scheme on a MicaZ mote based platform, demonstrating that energy savings are achievable even with imperfect feedback information, and report preliminary results on the ultra-low-power integrated healthcare monitoring platform from our collaborating partner Toumaz Technology. In conclusion, our work shows adaptive radio transmit power control as a low-cost way of extending the battery-life of severely energy constrained body wearable devices, and opens the door to further optimizations customized for specific deployment scenarios.

Identiferoai:union.ndltd.org:ADTP/257761
Date January 2008
CreatorsXiao, Shuo, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW
PublisherPublisher:University of New South Wales. Electrical Engineering & Telecommunications
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0021 seconds