Return to search

Conservation genetics and reproduction in three Australian marsupial species

Many Australian marsupial species require active population management to ensure their survival in the wild. Such management should be based on a sound understanding of species biology. This thesis explores how knowledge of reproduction and genetics can be applied to the management of three Australian marsupial species faced with contrasting management scenarios. The ??vulnerable?? greater bilby is the sole remaining desert bandicoot in Australia. They are a secretive, solitary species whose mating system is unclear. This research examined temporal changes in genetic diversity within two captive breeding programs utilising different management strategies. Using seven microsatellite loci, this study found the regular translocation of new individuals into the population maintained genetic diversity. Parentage analysis revealed the bilby to have a promiscious mating system. Sires and non-sires could not be distinguished by morphological traits. The tammar wallaby is a polygynous, solitary species that is threatened on mainland Australia, but overabundant on some offshore islands. The population genetics of tammars from the Abrolhos Islands in Western Australia were examined using nine autosomal and four Y-linked microsatellite loci, and mitochondrial DNA. There was a relationship between island size, population size and genetic diversity. The Abrolhos populations have significantly lower genetic diversity and are more inbred than mainland tammars and all sampled populations were significantly differentiated. The Abrolhos and mainland populations should be treated as separate Management Units. The eastern grey kangaroo is a gregarious, polygynous species that is often locally overabundant. To determine traits influencing male reproductive success, behavioural, morphological, physiological and genetic data were examined and showed dominance status, body size and testosterone concentrations were important factors. Sires were also significantly more heterozygous and genetically dissimilar to females, than non-sires. As body condition influences individual fitness, and management decisions; five body condition indices (BCI) calculated from morphological data were validated using serum biochemistry and haematology in two kangaroo populations with contrasting body condition. Blood parameters were found to be more reliable indicators of condition, questioning the credibility of BCIs currently used in management. These studies demonstrate the importance of reproductive and genetic data in assisting wildlife management, regardless of a species conservation status.

Identiferoai:union.ndltd.org:ADTP/258033
Date January 2008
CreatorsMiller, Emily Jane, Biological, Earth & Environmental Sciences, Faculty of Science, UNSW
PublisherPublisher:University of New South Wales. Biological, Earth & Environmental Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0019 seconds