Return to search

Upgrading and commissioning of a high vacuum deposition system for the evaporation of silicon thin-film solar cells

Using electron beam evaporation for the production of polycrystalline silicon (pc-Si) thin-film solar cells is an attractive alternative to PECVD deposition. Due to its faster deposition rate, using evaporation technology could significantly reduce module production costs. Other advantages are lower running costs, and the fact that no toxic gases are involved. However, currently no on-shelf equipment is available, and research in this field often relies on in-house designed systems. These can have various problems with reliability, deposition uniformity, and due to their custom design require frequent maintenance. In this work, a newly purchased electron beam evaporation system was upgraded and redesigned to be capable of depositing amorphous Si diodes for the fabrication of pc-Si thin-film solar cells. The main goal of the upgrade was to provide a safe and reliable tool which allows for the deposition of high purity semiconductor material. Reliable and safe operation was accomplished by designing the entire electrical supply circuit and incorporating various safety interlocks. Source cross-contamination issues were addressed by installing a specially designed shroud (source housing). To provide uniform substrate temperatures up to 600??C, a heater was specially designed, fabricated, installed and tested. Accurate design of all mechanical system components was realised by using 3D product design software (ProEngineer). The new evaporator was commissioned, which included testing and calibration of all the system components required for depositing on substrate sizes of up to 10x10cm2. Over this area a Si film thickness uniformity of +/-2%, performed with a maximum deposition rate of 7nm/s was achieved. Initial experiments using solid phase crystallisation and rapid thermal annealing revealed a sheet resistance uniformity of +/-4% for the Phosphorus and +/-7% for the Boron dopant effusion cell. Experimentation via Raman spectrometry and X-ray diffraction has revealed good crystalline properties, of the crystallised Si films, which is comparable to those of existing evaporation systems. Although the system was upgraded to achieve deposition pressures below 3x10-7 mbar, experiments have shown that this quality of vacuum may not be necessary for the fabrication of low impurity films. The system is now ready for further research in the field of thin-film photovoltaics, and the first functioning devices have been fabricated.

Identiferoai:union.ndltd.org:ADTP/258208
Date January 2009
CreatorsWolf, Michael, Photovoltaics & Renewable Energy Engineering, Faculty of Engineering, UNSW
PublisherPublisher:University of New South Wales. Photovoltaics & Renewable Energy Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0019 seconds