Return to search

Differential tolerance of introduced & native marine invertebrates to heavy metal pollution

In near-shore marine environments, two of the most prevalent anthropogenic disturbances affecting ecosystem diversity and function are the invasion of exotic species, and the release of toxic chemicals. Estuarine and harbour environments worldwide are dually subjected to high levels of toxic disturbance and ever increasing rates of invasion, via activities such as boating and shipping. It is not clear, however, whether the success of invasive species is influenced by the presence of toxic contaminants in these impacted environments. In particular, nonindigenous marine species (NIS) may be advantaged in chemically disturbed environments if they are more tolerant of toxicants. This thesis examines whether nonindigenous and native sessile invertebrate species have differential tolerance to a common aquatic contaminant, copper (Cu), which has links to both the invasion process (via its use in antifouling paints and the vector of hull fouling) and the modification of recipient environments (via human-mediated pollution). A series of laboratory- and field-based experiments showed that the cosmopolitan invasive bryozoans Watersipora subtorquata, Bugula neritina and Schizoporella errata are highly tolerant of copper pollution. The larvae and adults of W. subtorquata and B. neritina in particular were able to survive and grow in copper-polluted environments far exceeding most observed real-world levels (< 100 /??g 1-1). These nonindigenous species also showed very strong postexposure recovery. In contrast, the co-occurring native bryozoans Celleporaria nodulosa and Fenestrulina mutabilis demonstrated comparatively low tolerance to copper, with markedly reduced survival and fitness under Cu contaminated conditions, and inferior recovery abilities post-exposure. These findings were further supported by a long-term manipulative field experiment, examining the effect that varying levels of Cu exposure have on the structure and diversity of developing sessile invertebrate assemblages. Cu exposure decreased native species diversity by up to 50%, yet had no effect on NIS numbers. Consequently, in the presence of copper contamination, NIS dominated sessile communities, often resulting in substantial changes to community structure. Important insights were also gained into the nature of metal tolerance in NIS. Toxicity studies on larvae of the introduced bryozoan Bugula neritina revealed intraspecific differences in tolerance to Cu, associated with the level of pollution experienced by the adult source populations. There was also evidence of fitness costs related with increased Cu tolerance. In summary, we have found evidence that the success of invasive species is influenced by chemical contamination. NIS may be advantaged in contaminated estuaries relative to native species and this may assist in their establishment and persistence in new habitats.

Identiferoai:union.ndltd.org:ADTP/258348
Date January 2007
CreatorsPiola, Richard Fabio, Biological, Earth & Environmental Sciences, Faculty of Science, UNSW
PublisherPublisher:University of New South Wales. Biological, Earth & Environmental Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0018 seconds