Return to search

Multiphase flow in packed beds with special reference to ironmaking blast furnace

Multi-phase flows can be found in a range of processes in vanous industries. Ironrnaking blast furnace is one of the typical examples. With high pulverized coal injection rates, complete combustion within the raceway of blast furnace becomes difficult, giving rise to a large amount of powder flow together with gases into the furnace. Thus, the performance of a modern blast furnace with high PCI strongly depends on the characteristics of a multiphase system which involves gas, powder, and liquid superimposed on the motion of solid particles. For this multiphase flow system, the solid (coke, sinter/pellets, etc) movement and liquids (hot metal and slag) and powders (unbumt coal and coke ash) accumulation in the lower region of the furnace are believed to play an important role. This thesis presents an experimental study focus on quantifying the hydrodynamics of gas-powder and gas-powder-liquid flows through packed beds with special reference to blast furnace. The effects of process variables including fluid flowrate and some material properties on powder hold-up, pressure gradient and phase interaction are examined. An experimental study of the hydrodynamics of gas-powder flow in packed beds has been carried out. Glass powder and spherical/non-spherical particles are used to simulate pulverized coal and coke particle respectively. It is found that solid motion, powder flowrate and particle spericity affect powder hold-up and pressure gradient significantly. New correlations are proposed for static and dynamic powder hold-ups to account for these effects based on experimental results. A hydrodynamic model is proposed for gas-powder flow in packed beds with spherical and non-spherical particles. Incorporation these correlations and porosity function into the existed Fanning and Ergun equations, the pressure gradients in fixed and moving beds can be reasonably estimated. The gas-powder-liquid flow through the moving beds is studied. The effects of fluid variables and some material properties on total powder hold-up and pressure gradients have been examined experimentally within the so-called operational regime. The normal and non-wetting treated glass beads, glass powder and water or mixture of water and glycerin are used to simulate coke, pulverized coal and hot metal/slag in a blast furnace. The results indicates that steady-state gas-powder-liquid flow in moving packed beds can be achieved under certain flow conditions since particle motion gives main contribution while it provides a higher bed porosity, enhances powder and liquid flow and removes the accumulation of the powder. The fluid variables and liquid viscosity significantly affect the total powder hold-up and hence pressure gradient but the wettability does not. Based on the experimental results, new correlations for powder hold-up and pressure gradient are proposed for blast furnace modelling in terms of dimensionless number of flowrates for different phases. Incorporation of these correlations and the existed empirical correlations of phase interactions, a hydrodynamic model is proposed to quantify the interaction force between liquid and powder. The results show that this force plays an important role for stable gas-powder-liquid flow in moving beds though it is ignored by most of the previous researchers.

Identiferoai:union.ndltd.org:ADTP/258435
Date January 2008
CreatorsChen, Matthew Lidong, Materials Science & Engineering, Faculty of Science, UNSW
PublisherAwarded by:University of New South Wales. Materials Science & Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Chen Matthew Lidong., http://unsworks.unsw.edu.au/copyright

Page generated in 0.0023 seconds