Return to search

Investigation of molecular interactions with molecularly imprinted polymers

Currently, very little information is available for an in-depth understanding of the molecular binding interactions with molecularly imprinted polymers (MIPs). To address this issue MIPs that have high binding affinities for their template compounds were made so that the nature of these interactions could be elucidated using spectroscopic techniques.
12 functional MIPs were prepared using a series of azobenzene and anthracenyl derivatives as the templates. Affinities of these MIPs for the corresponding templates and analogues were determined by performing batch and competitive binding tests. It was found that extensively conjugated compounds that contain at least two OH groups, an electron-withdrawing substituent and have limited conformational freedom were effective templates.
The most efficient MIP, M34, was prepared with 4-[(4-nitrophenyl)azo]-1,2-benzenediol (12). M34 exhibited high affinities for azobenzene derivatives of catechol, and bound those that did not contain non electron-withdrawing substituents more specifically. M34 did not lose affinity for 12 in the presence of analogues, and vice versa, in competitive binding tests. These observations suggested a distribution of different binding sites on M34.
M34 bound substrates rapidly, which was attributed to its highly porous polymer matrix giving ready access to binding sites. Formation of the porous matrix was facilitated by the use of DMF as the porogen in the preparation of M34. DMF is not a conventional choice of porogen because use of such highly polar H-bonding solvents is thought to disrupt complexation between template and polymer precursors, which is required for the formation of binding sites.
Significant changes in the wavenumbers and the intensities of absorption bands assigned to the catechol substructure of 12 were observed in the FT-Raman spectra of 12 bound to M34. These findings suggested that the catechol substructure was responsible for interactions of 12 with M34 that are critical to rebinding and imprinting.
In-situ analyses of dithranol (8) being removed from and bound to its MIP, M23, were performed using ATR-IR spectroscopy. Only one band, assigned to the aromatic substructure of 8, was not obstructed by solvent bands in the spectra of unwashed M23 and washed M23 that was treated with the rebinding solution. The wavenumbers of the corresponding bands in the two spectra were significantly different. This observation suggested that there were differences in the vibrational characteristics of 8 bound to M23 under the two conditions.
Evidence was found for H-bonding between OH groups of 8 and C=O group of methacrylic acid using transmission FT-IR spectroscopy. However, no evidence was found that showed significant interactions between 12 and 2-vinylpyridine. Methacrylic acid and 2-vinylpyridine were used as the functional monomers in the preparations of M23 and M34. The FT-IR spectra of mixtures of 12 and 4-vinylpyridine showed three new bands assigned to H-bonded OH stretches. These observations indicated that 4-vinylpyridine H-bonds with 12, and would be a more effective functional monomer than 2-vinylpyridine in the preparation of the MIPs for 12.
Titration of 12 with 2-vinylpyridine was analysed by �H NMR spectroscopy. Only small changes to the signals of the corresponding compounds were observed. This lack of change was attributed to the use of d₇DMF, which would compete against 2-vinylpyridine for H-bonding interactions.
The findings made using ATR-IR spectroscopy and FT-Raman were novel because previously reported data on bound templates obtained using the corresponding techniques did not show changes in the vibrational characteristics of templates as they bind to MIPs. This investigation has shown that rebinding and spectroscopic studies can provide information about the nature of the binding interactions in MIPs.

Identiferoai:union.ndltd.org:ADTP/266230
Date January 2009
CreatorsMyint, Mo Aung, n/a
PublisherUniversity of Otago. Department of Chemistry
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://policy01.otago.ac.nz/policies/FMPro?-db=policies.fm&-format=viewpolicy.html&-lay=viewpolicy&-sortfield=Title&Type=Academic&-recid=33025&-find), Copyright Mo Aung Myint

Page generated in 0.002 seconds