Return to search

Molecular tailoring of elastomer surface by controlled plasma engineering /

Plasma polymerisation (PP) is an emerging processing technology with immense potential for future industrial applications, which is increasingly being used for the fabrication of functional coatings on polymeric substrates. In this technique, the solid polymeric film is directly deposited onto the substrate surface to create a new surface of very interesting and unique properties. PP utilizes gas phase chemistries in low-pressure environment to produce well-defined high quality films in controllable and tunable fashion. A major advantage of this process is that it is an environmental safety technique and strategically superior compared to other thin film deposition techniques such as spin coating and spray coating. In general, the quality of the plasma polymer film can be controlled, precisely and reproducible. However, mechanism of the coating under plasma polymerisation is complex and has not yet been completely understood. / The ethylene propylene diene terpolymers (EPDMs) are increasingly being used in numerous technological applications, such as automotive sealing sections (~25kg of elastomer is used in an average car) due to their elasticity. ozone resistance, low weight, ease of fabrication in desired shape/form; favorable mechanical properties and low cost. However, the deficiency of EPDM in the surface specific secondary engineering characteristics that may play a critical role in many applications is encountered. The performance of this elastomeric materials may be further enhanced by deposition of organic surface coatings, which can satisfy one or more surface specific functions including, hydrophobicity, low friction, high abrasion resistance, decorative and protective coatings against harsh terrestrial and/or space environments, etc. / In this PhD thesis the objectives of the research were focused on: (i) creation of low friction and high abrasion resistance ultra thin functional PP coating onto EPDM substrate surface using fluorocarbons and organosilicones as precursors, (ii) investigation of the structure-property-processing relationship of the deposited film in detail, (iii) development of new plasma thin film characterisation and performance evaluation techniques. / Thesis (PhDAppliedScience)--University of South Australia, 2004.

Identiferoai:union.ndltd.org:ADTP/267656
CreatorsTran, Nguyen Duc.
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightscopyright under review

Page generated in 0.0023 seconds