Return to search

Insulin action: unravelling AKT signalling in Adipocytes

The Ser/Thr kinase Akt plays an important role in many of insulin's actions including GLUT4 translocation to the plasma membrane (PM). However, there are several features of Akt's regulation of GLUT4 translocation that remain unclear. The goal of my thesis was to resolve some of the following questions: Is activation of Akt sufficient to stimulate GLUT4 translocation? What is the quantitative relationship in signal transmission between individual components within the Akt cascade? What is the role of Akt in insulin resistance? To determine if activation of Akt is sufficient to mediate GLUT4 translocation, I developed a drug-inducible heterodimerisation strategy to activate Akt2 independently of other potential insulin signalling pathways. These studies revealed that activation of Akt2 resulted in rapid stimulation of GLUT4 translocation to a similar extent with maximum insulin, indicating that Akt2 is sufficient for this event. It was previously observed that maximum effect of insulin on GLUT4 translocation was obtained with minimum activation of Akt. To resolve this discrepancy, the relationship between Akt signalling components was examined using a quantitative kinetic and dose response approach combined with hierarchical cluster analysis. Most notably I observed a strong relationship between Akt at the PM, but not Akt in the whole cell lysate, with its substrate phosphorylation. Active pools of phospho-Akt and -AS160, a major substrate involved in GLUT4 translocation, were found in the lipid raft, highlighting the importance of subcellular partitioning of key signalling components for achieving biological specificity. The involvement of Akt in insulin resistance was investigated using the heterodimerisation strategy. These studies revealed that insulin itself initiates a pathway that causes insulin resistance by converging on target(s) downstream of Akt. This inhibitory pathway emanates from PI3-kinase and is likely induced by a range of insults including chronic insulin and dexamethasone. In conclusion, Akt is a crucial element in the insulin action pathway that exhibits precise spatial regulation. While the role of this nanoregulation of Akt in disease remains to be evaluated, my studies suggest that the major defect contributing to insulin resistance occurs downstream of Akt. The elucidation of this target will have major implications for metabolic diseases.

Identiferoai:union.ndltd.org:ADTP/272631
Date January 2009
CreatorsNg, Foong Loo Yvonne, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW
PublisherAwarded by:University of New South Wales. Biotechnology & Biomolecular Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Ng Foong Loo Yvonne., http://unsworks.unsw.edu.au/copyright

Page generated in 0.0018 seconds