Return to search

Experimental investigation static liquefaction of lightly cemented sands

An experimental investigation was conducted on the static liquefaction behaviour of very loose lightly cemented sands. Undrained and drained triaxial compression tests, one dimensional consolidation, high stress compression, and unconfined compression tests were performed on artificially prepared lightly cemented loose samples with cement-sand ratios of 2, 4 and 6%. Additional tests were also conducted on uncemented samples prepared at the same initial void ratio as the cemented samples. Besides the influence of degree of cementation, the effects of void ratio and confining pressure on the liquefaction potential of cemented sands were examined. The aim of this study is to make significant contribution to the understanding of static liquefaction failures in lightly cemented sands. It is shown that cementation could increase the initial stiffness and yield strength of cemented sands but its effect might decrease considerably after the peak strength because of destruction of the cementation bond. The response of cemented sands at lower cement contents was very similar to the response of loose sands and behaviour approached the response of medium to dense sands with increase in the degree of cementation. It is also shown that degree of cementation has a significant influence on liquefaction resistance. Even though the presence of small amounts of cementation did not prevent liquefaction failure, the liquefaction resistance of cemented sands generally increased for higher degrees of cementation. The consolidation, high stress compression and unconfined compression tests demonstrated the effect of cementation in increasing both the stiffness and strength of cemented sands. The unconfined compression strength increased approximately linearly with the increase in cement content. The rate of strength gain increased with an increase in the dry density of the compacted sample, indicating that the cementation was more for denser samples.

Identiferoai:union.ndltd.org:ADTP/280480
Date January 2008
CreatorsElhadayri, Farj, Civil & Environmental Engineering, Faculty of Engineering, UNSW
PublisherAwarded by:University of New South Wales. Civil & Environmental Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Elhadayri Farj., http://unsworks.unsw.edu.au/copyright

Page generated in 0.0016 seconds