Return to search

The role of multidrug transporters in childhood malignancies

Multidrug resistance (MDR) is one of the foremost causes of treatment failure in childhood malignancies. MDR is a multifactorial process, but classic resistance to cytotoxic drugs has most often been associated with over-expression of one or more MDR transporter proteins in malignant cells, conferring on them the ability to extrude an extraordinarily diverse array of endo- and xenobiotics out of the cell. The best characterized multidrug transporters, P-glycoprotein (Pgp) and the Multidrug Resistance-associated Protein (MRP), belong to the ATP-binding cassette (ABC) gene superfamily, and have been previously implicated in the development of drug resistance in the clinical context. The work described herein examined the various aspects of the MDR genotype and phenotype in the childhood malignancies acute lymphoblastic leukaemia (ALL) and neuroblastoma. The first series of studies tested the hypothesis that morphine, a potential Pgp substrate, might influence the efficacy and/or toxicity of clinically used chemotherapy agents which are substrates for Pgp. The results, however, provided no evidence in a variety of human tumour cell lines of morphine influencing response to selected chemotherapeutic drugs. This finding is particularly important as morphine remains to be the opioid of choice for the treatment of cancer pain in the clinic. The second series of studies examined the effect of single nucleotide polymorphisms (SNPs) in the MDR1 gene, encoding Pgp, and in the MRP1 gene, on patient outcome in childhood ALL or neuroblastoma, with a view to identifying novel prognostic markers for these malignancies. It was found that two of the examined SNPs in the MRP1 gene were associated with improved outcome in neuroblastoma, which had not previously been demonstrated in this disease. Moreover, each of the relevant MRP1 SNPs were associated with lower MRP1 gene expression in both patient samples and tumour cell lines, supporting previous studies indicating that low MRP1 expression in neuroblastoma is strongly associated with improved patient outcome. Importantly, the results of this study suggest a role for selected MRP1 polymorphisms in predicting clinical response in neuroblastoma. Finally, a series of studies were undertaken, using both in vitro and in vivo model systems, to test the efficacy of putative small molecule inhibitors of the MRP1 gene and its transcriptional regulator, the MYCN oncogene, in neuroblastoma. These studies demonstrated for the first time the efficacy of a novel compound, 4H10, at reversing multidrug resistance either in cultured neuroblastoma cells, or in the MYCN transgenic mice, which develop neuroblastoma that closely mirror the human disease. The results indicate that inhibition of MRP1 function has potential clinical importance in the treatment of neuroblastoma, and therefore warrant further research in this area. In contrast, the results failed to provide evidence of the in vivo efficacy of the novel putative small molecule MYCN inhibitors analysed in these studies. Collectively, the findings of these studies contribute to a better understanding of the mechanisms of clinical drug resistance, and may help in the development of new approaches for risk assessment and treatment of aggressive childhood malignancies and thereby improve the long-term outlook of children diagnosed with these debilitating diseases.

Identiferoai:union.ndltd.org:ADTP/282484
Date January 2007
CreatorsPajic, Marina, Women's & Children's Health, Faculty of Medicine, UNSW
PublisherAwarded by:University of New South Wales. Women's & Children's Health
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Pajic Marina., http://unsworks.unsw.edu.au/copyright

Page generated in 0.0025 seconds