Return to search

Ensuring Serializable Executions with Snapshot Isolation DBMS

Doctor of Philosophy(PhD) / Snapshot Isolation (SI) is a multiversion concurrency control that has been implemented by open source and commercial database systems such as PostgreSQL and Oracle. The main feature of SI is that a read operation does not block a write operation and vice versa, which allows higher degree of concurrency than traditional two-phase locking. SI prevents many anomalies that appear in other isolation levels, but it still can result in non-serializable execution, in which database integrity constraints can be violated. Several techniques have been proposed to ensure serializable execution with engines running SI; these techniques are based on modifying the applications by introducing conflicting SQL statements. However, with each of these techniques the DBA has to make a difficult choice among possible transactions to modify. This thesis helps the DBA’s to choose between these different techniques and choices by understanding how the choices affect system performance. It also proposes a novel technique called ’External Lock Manager’ (ELM) which introduces conflicts in a separate lock-manager object so that every execution will be serializable. We build a prototype system for ELM and we run experiments to demonstrate the robustness of the new technique compare to the previous techniques. Experiments show that modifying the application code for some transactions has a high impact on performance for some choices, which makes it very hard for DBA’s to choose wisely. However, ELM has peak performance which is similar to SI, no matter which transactions are chosen for modification. Thus we say that ELM is a robust technique for ensure serializable execution.
Date January 2009
CreatorsAlomari, Mohammad
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish
RightsThe author retains copyright of this thesis.,

Page generated in 0.0021 seconds