Traditional Automatic Target Recognition (ATR) Systems often fail when faced with complex recognition tasks involving noise, clutter, and complexity. This work is concerned with implementing a real time, vision based ATR system using an Artificial Neural Network (ANN) to overcome some of the shortcomings of traditional ATR systems. The key issues of this work are vision, pattern recognition and artificial neural networks. The ANN presented in this thesis is inspired by Prof. Stephen Grossberg's work in Adaptive Resonance Theory (ART) and neurophysiological data on the primate brain. An ANN known as Selective Attention Adaptive Resonance Theory (SAART) (Lozo, 1995, 1997) forms the basis of this work. SAART, which is based on Grossberg's ART, models the higher levels of visual processing in the primate brain to provide an ATR system capable of learning and recognising targets in cluttered and complex backgrounds. This thesis contributes an extension to the SAART model to allow a degree of tolerance to imperfections including distortion, changes in size, orientation, or position. In addition to this extension, it is also demonstrated how modulated neural layers can be used for image filtering. A possible extension of the architecture for multi-sensory environments is proposed as a foundation for future research. / Thesis (MEng)--University of South Australia, 2000
Identifer | oai:union.ndltd.org:ADTP/284338 |
Date | January 2000 |
Creators | Westmacott, Jason |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | copyright under review |
Page generated in 0.0022 seconds