Return to search

Graphical Models: Modeling, Optimization, and Hilbert Space Embedding

Over the past two decades graphical models have been widely used as powerful tools for compactly representing distributions. On the other hand, kernel methods have been used extensively to come up with rich representations. This thesis aims to combine graphical models with kernels to produce compact models with rich representational abilities. Graphical models are a powerful underlying formalism in machine learning. Their graph theoretic properties provide both an intuitive modular interface to model the interacting factors, and a data structure facilitating efficient learning and inference. The probabilistic nature ensures the global consistency of the whole framework, and allows convenient interface of models to data. Kernel methods, on the other hand, provide an effective means of representing rich classes of features for general objects, and at the same time allow efficient search for the optimal model. Recently, kernels have been used to characterize distributions by embedding them into high dimensional feature space. Interestingly, graphical models again decompose this characterization and lead to novel and direct ways of comparing distributions based on samples. Among the many uses of graphical models and kernels, this thesis is devoted to the following four areas: Conditional random fields for multi-agent reinforcement learning

Conditional random fields (CRFs) are graphical models for modelling the probability of labels given the observations. They have traditionally been trained with using a set of observation and label pairs. Underlying all CRFs is the assumption that, conditioned on the training data, the label sequences of different training examples are independent and identically distributed (iid ). We extended the use of CRFs to a class of temporal learning algorithms, namely policy gradient reinforcement learning (RL). Now the labels are no longer iid. They are actions that update the environment and affect the next observation. From an RL point of view, CRFs provide a natural way to model joint actions in a decentralized Markov decision process. They define how agents can communicate with each other to choose the optimal joint action. We tested our framework on a synthetic network alignment problem, a distributed sensor network, and a road traffic control system. Using tree sampling by Hamze & de Freitas (2004) for inference, the RL methods employing CRFs clearly outperform those which do not model the proper joint policy.

Bayesian online multi-label classification Gaussian density filtering (GDF) provides fast and effective inference for graphical models (Maybeck, 1982). Based on this natural online learner, we propose a Bayesian online multi-label classification (BOMC) framework which learns a probabilistic model of the linear classifier. The training labels are incorporated to update the posterior of the classifiers via a graphical model similar to TrueSkill (Herbrich et al., 2007), and inference is based on GDF with expectation propagation. Using samples from the posterior, we label the test data by maximizing the expected F-score. Our experiments on Reuters1-v2 dataset show that BOMC delivers significantly higher macro-averaged F-score than the state-of-the-art online maximum margin learners such as LaSVM (Bordes et al., 2005) and passive aggressive online learning (Crammer et al., 2006). The online nature of BOMC also allows us to effciently use a large amount of training data.

Hilbert space embedment of distributions
Graphical models are also an essential tool in kernel measures of independence for non-iid data. Traditional information theory often requires density estimation, which makes it unideal for statistical estimation. Motivated by the fact that distributions often appear in machine learning via expectations, we can characterize the distance between distributions in terms of distances between means, especially means in reproducing kernel Hilbert spaces which are called kernel embedment. Under this framework, the undirected graphical models further allow us to factorize the kernel embedment onto cliques, which yields efficient measures of independence for non-iid data (Zhang et al., 2009). We show the effectiveness of this framework for ICA and sequence segmentation, and a number of further applications and research questions are identified. Optimization in maximum margin models for structured data Maximum margin estimation for structured data, e.g. (Taskar et al., 2004), is an important task in machine learning where graphical models also play a key role. They are special cases of regularized risk minimization, for which bundle methods (BMRM, Teo et al., 2007) and the closely related SVMStruct (Tsochantaridis et al., 2005) are state-of-the-art general purpose solvers. Smola et al. (2007b) proved that BMRM requires O(1/έ) iterations to converge to an έ accurate solution, and we further show that this rate hits the lower bound. By utilizing the structure of the objective function, we devised an algorithm for the structured loss which converges to an έ accurate solution in O(1/√έ) iterations. This algorithm originates from Nesterov's optimal first order methods (Nesterov, 2003, 2005b).

Identiferoai:union.ndltd.org:ADTP/285717
Date January 2010
CreatorsZhang, Xinhua, xinhua.zhang.cs@gmail.com
PublisherThe Australian National University. ANU College of Engineering and Computer Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.anu.edu.au/legal/copyrit.html), Copyright Xinhua Zhang

Page generated in 0.0025 seconds