Return to search

Seismic performance of reinforced concrete frames.

Many intra-tectonic plate regions are considered to have low to moderate seismic risk. However, devastating earthquakes can occur in these regions and result in high consequences in terms of casualties and damage. Non-ductile detailing practice employed in these structures make them prone to potential damage and failure during an earthquake. Furthermore, the use of infill walls is a divisive issue as on positive side dual wall-frame systems have beneficial effects related to strength, stiffness, and ductility. However, if not designed properly infill wall can also lead to undesirable structural failures of complete wall frame system. Although, there has been significant amount of international research in this area, it is worth noting that very little research exists for Australian frames. This thesis presents the experimental and analytical research conducted at The University of Adelaide to gain some insight into the behaviour of typically detailed Australian reinforced concrete frames subjected to ground motions. The main objectives of this research were (1) to investigate the behaviour of non-seismically designed reinforced concrete frames under a 500-YRP earthquake; (2) to determine the different magnitudes of earthquake (YRP) that are likely to cause excessive drifts in or collapse of gravity-load-designed reinforced concrete frames and (3) to investigate the effect of infill walls on the moment-resisting frames subjected to seismic loads. The experimental program consisted of earthquake simulation tests on a 1/5 scale model of a 3-storey reinforced concrete frame and four ½-scale reinforced concrete brick infilled frame specimens subjected to quasi-static cyclic loading. The analytical study included static pushover and non-linear dynamic analyses of the 3-, 5- and 12-storey reinforced concrete frames. From the overall performance of gravity-load-designed bare reinforced concrete frames considered in this study, it was concluded that the non-seismically designed frames appear to be capable of resisting a “design magnitude earthquake” (i.e., 500- YRP) in low earthquake hazard regions. However, their behaviour under more severe earthquakes (e.g. a 2500-YRP earthquake) is questionable. Perhaps the earthquake design requirements should consider as an alternative the ‘collapse prevention’ limit state for longer return period earthquakes, of the order of 2000–2500-YRP. The experimental research on reinforced concrete infilled frame indicated that the infill wall does not adversely effect the in plane ultimate strength, stiffness, and ductility of the bare reinforced concrete frame. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1372229 / Thesis (M.Eng.Sc.) - University of Adelaide, School of Civil, Environmental and Mining Engineering, 2009

Identiferoai:union.ndltd.org:ADTP/286619
Date January 2009
CreatorsKashyap, Jaya
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish

Page generated in 0.0021 seconds