Return to search

Water Movement in Unsaturated Concrete: Theory, Experiments, Models

Prediction of contaminant transport in concrete subjected to short cyclical wetting and drying processes is integrally bound to prediction of the moisture flux. The concrete is unsaturated and the non-linear contaminant and moisture fluxes are not described by simple constant diffusion methods. This thesis presents, and partially justifies, a thermodynamic model for prediction of moisture movement in concrete, at all moisture contents commonly encountered. The wetting process is examined with Nuclear Magnetic Resonance (NMR) images during a simple absorption (sorptivity) experiment. Diffusivity functions are derived via a novel analytical approach and a universal diffusivity is suggested. Water sorption and desorption isotherms are measured on large concrete samples. van Genuchten’s retention function is successfully used to model the results. The unrelia-bility of the water sorption method at high moisture contents is illustrated by comparison with Mercury Intrusion Porosimetry (MIP). The BJH method is exploited to provide a methodology for estimating the water sorption isotherm from MIP. Mualem’s conductivity model is assessed with the water retention and NMR results. This thorough validation of the model yields a tortuosity parameter that is different to that commonly assumed. An analytical relationship between the sorptivity and the saturated permeability suggests the experimental the long-term unsaturated permeability overesti-mates the unsaturated conductivity function, and as such should be used judiciously when predicting unsaturated flow processes. Mualem’s conductivity model is further exploited to provide unsaturated air and vapour functions that are experimentally justified. The thermodynamic description of water movement and the hydraulic functions that are developed in the thesis are incorporated into T r inCet , a transient heat and mass trans-fer model based on the Finite Element Method (FEM). The complex coupled behaviour of air, liquid, vapour and temperature are well handled under a variety of common cyclical boundary conditions. The thesis presents all necessary experimental results required for validation of a com-plex, but easily described, model for moisture movement. It covers disparate ground to provide a powerful numerical model of unsaturated moisture movement in concrete under short-term cyclical processes.

Identiferoai:union.ndltd.org:ADTP/291119
CreatorsLeech, Craig Anthony
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish

Page generated in 0.0612 seconds