Return to search

Near-Coastal Ultrahigh Resolution Scatterometer Winds

RapidScat 2.5 km ultrahigh resolution (UHR) wind estimation is introduced and validated it in near-coastal regions. In addition, this thesis applies direction interval retrieval techniques and develops a new wind processing method to enhance the performance of RapidScat UHR wind estimation in the nadir region. The new algorithm is validated with L2B wind estimates, Numerical Weather Prediction (NWP) wind products, and buoy measurements. The wind processing improvements produce more spatially consistent UHR winds that compare well with the wind products mentioned above. Hawaii regional climate model (HRCM), QuikSCAT, and ASCAT wind estimates are compared in the lee of the Big Island with the goal of understanding UHR scatterometer wind retrieval capabilities in this area. UHR wind vectors better resolve fine resolution wind speed features compared to L2B, but still do not resolve the expected wind direction features. A comparison of scatterometer measured σ 0 and HRCM and NWP predicted σ 0 suggests that scatterometers can detect a reverse flow in the lee of the island. Differences between scatterometer measured σ 0 and HRCM predicted σ 0 indicate error in the placement of key reverse flow features by the model. Coarse initialization fields and a large fixed size median filter window are also shown to impede UHR wind retrieval in this area.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-10126
Date05 December 2019
CreatorsHutchings, Nolan Lawrence
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttps://lib.byu.edu/about/copyright/

Page generated in 0.0016 seconds