Return to search

Fault Tolerant Robotics using Active Diagnosis of Partially Observable Systems and Optimized Path Planning for Underwater Message Ferrying

Underwater robotic vehicles are used in a variety of environments that would be dangerous for humans. For these vehicles to be successful, they need to be tolerant of a variety of internal and external faults. To be resilient to internal faults, the system must be capable of determining the source of faulty behavior. However many different faults within a robotic vehicle can create identical faulty behavior, which makes the vehicles impossible to diagnose using conventional methods. I propose a novel active diagnosis method for differentiating between faults that would otherwise have identical behavior. I apply this method to a communication system and a power distribution system in a robotic vehicle and show that active diagnosis is successful in diagnosing partially observable faults. An example of an external fault is inter-robot communication in underwater robotics. The primary communication method for underwater vehicles is acoustic communication which relies heavily on line-of-sight tracking and range. This can cause severe packet loss between agents when a vehicle is operating around obstacles. I propose novel path-planning methods for an Autonomous Underwater Vehicle (AUV) that ferries messages between agents. I applied this method to a custom underwater simulator and illustrate how it can be used to preserve at least twice as many packets sent between agents than would be obtained using conventional methods.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-10767
Date02 December 2022
CreatorsWebb, Devon M.
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttps://lib.byu.edu/about/copyright/

Page generated in 0.0026 seconds