Return to search

Perfusion Pressure-Flow Relationships in Synthetic Poroelastic Vocal Fold Models

The purpose of this research was to study perfusion pressure-flow relationships in self-oscillating synthetic poroelastic vocal fold (VF) models before, during, and after vibration. This was accomplished by developing a custom ultra-soft poroelastic material, incorporating the poroelastic material as the cover layer in a synthetic VF model, and studying the model vibratory response and the flow rate of fluid perfused through the cover layer while undergoing flow-induced vibration. The custom ultra-soft poroelastic material was developed using the method of direct templating with sucrose spheres as the sacrificial template and silicone as the infiltration medium. The average modulus of elasticity of the poroelastic material was found to be 3.30 kPa, which represented an 84% decrease compared to the same non-porous silicone. Porosities between 62.8% and 67.2% were estimated. The fabrication process of the poroelastic VF model is presented in detail, including steps to prepare the model for vibration. The apparatus for measuring perfusion pressure flow-relationships in the VF model is described. Vibratory characteristics of subglottal onset pressure, frequency, glottal area, and glottal width are presented and compared to those of the human VF and other published VF models for varying perfusion pressures. The effects of vibration on perfusion flow rate and permeability are reported. The poroelastic VF models had an average onset pressure of 1.01 kPa while vibrating at an average frequency of 117 Hz and with a glottal width of 1.40 mm. Perfusion flow rate decreased between 15% and 22% from rest to vibration and increased between 29% and 33% after vibration ceased. Permeability followed the same trend of decreasing with vibration and increasing after vibration, with measured values on the order of 10^(-11) m^2 to 10^(-9) m^2. It is anticipated that this poroelastic material and model will form the basis for future studies of perfused flow through human VFs, engineered VF tissues and biomaterials, and VF models.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-10954
Date20 April 2023
CreatorsThacker, Cooper B.
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttps://lib.byu.edu/about/copyright/

Page generated in 0.0022 seconds