Return to search

High Voltage Analog Design in a Standard Digital CMOS Process

This thesis introduces high-voltage approaches that are implemented in an analog Hall-effect sensor interface. This interface has been realized in a modified 5V 0.6um CMOS process using 40V high-voltage MOS transistors that do not affect low-voltage device functionality. These circuits include a high-voltage, low-offset current sense amplifier, which achieves a common-mode input range that is within a Vtp of Vdd using a bulk-driven differential input stage. The amplifier also uses high voltage cascode devices to protect low-voltage devices that have been placed in critical matching areas to achieve a low input offset voltage of 500uV without the use of trim. A short to battery architecture is also discussed which uses a bulk-driven comparator and a PMOS blocking technique and allows for a reliable short to battery breakdown voltage without using a series blocking diode. Integration of these blocks into a standard CMOS process leads to cost savings as additional devices such as data converters and microprocessors are combined with the Hall-effect sensor interface.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-1808
Date17 November 2005
CreatorsBeck, Riley D.
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0111 seconds