Return to search

Glutamic Acid Resorcinarene-based Molecules and Their Application in Developing New Stationary Phases in Ion Chromatography

Resorcinarenes can be functionalized at their upper and lower rims. In this work, the upper rim of a resorcinarene was functionalized with glutamic acids and the lower rim was functionalized with either methyl or undecyl alkyl groups. The cavitands were characterized by nuclear magnetic resonance (NMR), mass spectrometry (MS), UV-vis spectroscopy, dynamic light scattering (DLS) and electron microscopy. The binding of resorcinarene with amine guests was studied in DMSO by UV-vis titration. The obtained binding constants (K values) were in the range of 12,000-136000 M-1. The resorcinarenes were shown to form aggregates in a variety of solvents. The aggregates were spherical as confirmed by DLS, SEM and TEM experiments. Dynamic light scattering (DLS) experiments revealed the size of the aggregates could be controlled by cavitand concentration, pH, and temperature. The resorcinarene with undecyl alkyl group were adsorbed onto 55% cross-linked styrene-divinylbenzene resin to prepare a new stationary phases for ion chromatography (IC) columns. The new column packing material was applied in determination of uremic toxins and water contaminants. The new IC column afforded separation of the five uremic toxins : guanidinoacetic acid, guanidine, methylguanidine, creatinine, and guanidinobenzoic acid in 30 minutes. Detection and quantification of uremic toxins helps diagnose kidney problems and start patient care. Gradient elutions at ambient temperature with methanesulfonic acid (MSA) as eluent resulted in detection levels in water from 10 to 47 ppb and in synthetic urine from 28 to 180 ppb. Trace levels of creatinine (1 ppt) were detected in the urine of a healthy individual using the columns. The new IC stationary phase separated cationic pharmaceuticals including a group of guanidine compounds in surface water. Detection limits in the range of 5 - 32 µg L-1 were achieved using integrated pulsed amperometric detection (IPAD) for guanidine (G), methylguanidine (MG), 1,1-dimethylbiguanidine (DMG), agmatine (AGM), guanidinobenzoic acid (GBA) and cimetidine (CIM). Suppressed conductivity (CD) and UV-vis detection resulted in limits of detection similar to IPAD, in the range of 1.7 - 66 µg L-1, but were not able to detect all of the analytes. Three water sources, river, lake, and marsh, were analyzed and despite matrix effects, sensitivity for guanidine compounds was in the 100 µg L-1 range and apparent recoveries were 80-96 %. The peak area precision was 0.01 - 2.89% for IPAD, CD and UV-vis detection.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-7436
Date01 June 2016
CreatorsPanahi, Tayyebeh
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Theses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0023 seconds