Return to search

Experimental study of 2D hole systems : coherent transport in quantum dots and magnetothermopower

Two-dimensional (2D) carrier systems built from semiconductor heterostructures have been at the center of a wide variety of experimental and theoretical research over the past decades. The quality improvement of GaAs/AlGaAs systems has allowed the observation of several peculiar ground states stabilized by the subtle interplay between carrier-carrier interaction, disorder and magnetic field. More recently, 2D systems in semiconductor heterostructures have also been used as a prime substrate for further confinement of the carriers to mesoscopic systems of major interest for the emerging fields of quantum computing and spintronics. This thesis addresses both magnetotransport measurements in hole open quantum dots (QDs) and thermopower studies of 2D holes in (311)A GaAs heterostructures.
In the first part of this thesis, we describe the fabrication process for hole GaAs open QDs and investigate their magnetotransport properties at very low temperature T. Below 500 mK, the magnetoconductance of the open QDs exhibits clear signatures of coherent transport, namely magnetoconductance fluctuations and weak anti-localization. From these effects, we extract a T dependence for the dephasing time, together with an upper limit for the spin-orbit scattering time using the random matrix theory. Both the dephasing time and the spin-orbit scattering time are found to be much smaller than for electrons in similar systems.
In the second part of this work, we report low-T thermopower measurements in the parallel magnetic field-induced metal-insulator transition (MIT) of 2D GaAs hole heterojunctions with different interface-dependent mobilities. When the magnetic field is increased, the diffusion thermopower decreases across the MIT. The reduction of the diffusion thermopower is more pronounced for the lower mobility sample where it reverses its sign. This behaviour indicates that the system does not undergo any ground state modification through the MIT but rather that the parallel magnetic field induces a dramatic change of the dominant hole scattering mechanisms.
Finally, the last part of this thesis is devoted to the thermopower study of the insulating phase (IP) observed in 2D GaAs bilayer hole systems around the total Landau level filling factor n = 1. Our measurements show that the diffusion thermopower diverges with decreasing T in the IP. This divergence of the diffusion thermopower at low T indicates the opening of an energy gap in the system's ground state and suggests the formation of a pinned bilayer hole Wigner crystal around n = 1.

Identiferoai:union.ndltd.org:BICfB/oai:ucl.ac.be:ETDUCL:BelnUcetd-11282007-103425
Date06 December 2007
CreatorsFaniel, Sébastien
PublisherUniversite catholique de Louvain
Source SetsBibliothèque interuniversitaire de la Communauté française de Belgique
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-11282007-103425/
Rightsunrestricted, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses UCL. A cette fin, je donne licence à l'UCL : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus.

Page generated in 0.0026 seconds