Return to search

Fault Detection in Autonomous Robots

In this dissertation, we study two new approaches to fault detection for autonomous robots. The first approach involves the synthesis of software components that give a robot the capacity to detect faults which occur in itself. Our hypothesis is that hardware faults change the flow of sensory data and the actions performed by the control program. By detecting these changes, the presence of faults can be inferred. In order to test our hypothesis, we collect data in three different tasks performed by real robots. During a number of training runs, we record sensory data from the robots both while they are operating normally and after a fault has been injected. We use back-propagation neural networks to synthesize fault detection components based on the data collected in the training runs. We evaluate the performance of the trained fault detectors in terms of the number of false positives and the time it takes to detect a fault.
The results show that good fault detectors can be obtained. We extend the set of possible faults and go on to show that a single fault detector can be trained to detect several faults in both a robot's sensors and actuators. We show that fault detectors can be synthesized that are robust to variations in the task. Finally, we show how a fault detector can be trained to allow one robot to detect faults that occur in another robot.
The second approach involves the use of firefly-inspired synchronization to allow the presence of faulty robots to be determined by other non-faulty robots in a swarm robotic system. We take inspiration from the synchronized flashing behavior observed in some species of fireflies. Each robot flashes by lighting up its on-board red LEDs and neighboring robots are driven to flash in synchrony. The robots always interpret the absence of flashing by a particular robot as an indication that the robot has a fault. A faulty robot can stop flashing periodically for one of two reasons. The fault itself can render the robot unable to flash periodically.
Alternatively, the faulty robot might be able to detect the fault itself using endogenous fault detection and decide to stop flashing.
Thus, catastrophic faults in a robot can be directly detected by its peers, while the presence of less serious faults can be detected by the faulty robot itself, and actively communicated to neighboring robots. We explore the performance of the proposed algorithm both on a real world swarm robotic system and in simulation. We show that failed robots are detected correctly and in a timely manner, and we show that a system composed of robots with simulated self-repair capabilities can survive relatively high failure rates.
We conclude that i) fault injection and learning can give robots the capacity to detect faults that occur in themselves, and that ii) firefly-inspired synchronization can enable robots in a swarm robotic system to detect and communicate faults.
Date27 June 2008
CreatorsChristensen, Anders L
ContributorsLima, Pedro, Birattari, Mauro, Stützle, Thomas, Bontempi, Gianluca, Bersini, Hugues, Lanzi, Pier, Dorigo, Marco, Parker,Lynne
PublisherUniversite Libre de Bruxelles
Source SetsBibliothèque interuniversitaire de la Communauté française de Belgique
Detected LanguageEnglish
Rightsrestricted, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses ULB. A cette fin, je donne licence à ULB : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus.

Page generated in 0.0034 seconds