Identification and Spatiotemporal Control of the Asymmetrical Membrane Cortex in Cleavage Stage Sea Urchin Embryos

Thesis advisor: David R. Burgess / Polarity established by the first cleavages in sea urchin embryos was investigated in this thesis revealing precocious embryonic polarity. Studies of embryonic polarity have focused on protostomes such as <italics>C. elegans</italics>, and those on deuterostomes have focused on later developmental stages. I find asymmetries in the sea urchin membrane cell cortex as early as the first division after fertilization as a result of new membrane addition in the cleavage furrow. Membrane domains and the polarity determinants Par6, aPKC, and Cdc42 are polarized to the apical, or free, cell surface, while the cell-cell contact site remains distinct. Using immunofluorescence, fluorescence recovery after photobleaching (FRAP), and specific inhibitor treatments, myosin filaments were identified as the major regulator of membrane cortex polarity. However, membrane domains and cortical polarity determinants are differentially regulated with respect to blastomere dissociation. These asymmetries are required for proper spindle alignment and cleavage plane determination and are responsible for polarized fluid phase endocytosis. The work in this thesis and future studies addressing the connection between the membrane cortex and myosin filaments has and will lead to a greater understanding of the maintenance of embryonic polarity in cleavage stage sea urchin embryos. / Thesis (PhD) — Boston College, 2009. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_101295
Date January 2009
CreatorsAlford, Lea Marie
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.0021 seconds