Return to search

The role of human motion processing complex, MT+, during sustained perception and attention

Thesis advisor: Scott D. Slotnick / The overarching aim of this dissertation is to examine the role of human motion processing complex, MT+ during sustained perception and attention. MT+ is comprised of sub-region MT, which processes motion in the contralateral visual field (i.e., left hemisphere MT processes motion in the right visual field and vice versa), and sub-region MST, which processes motion in both the contralateral and ipsilateral visual fields. Whereas previous transcranial magnetic stimulation (TMS) research has provided compelling evidence that region MT+ is necessary for low-level motion processing, Chapter 1 describes an experiment testing whether the sub-region MT is necessary for contralateral low-level motion processing. Chapter 2 describes an experiment that dissociates low-level sensory attentional modulation in MT+ from high-level attentional control processing in the parietal cortex (i.e., during sustained attention). Chapter 3 describes an experiment investigating the role of MT+ during aesthetic processing when viewing visual art. Importantly, this experiment tests whether the aesthetic is tied to not only low-level motion processing in MT+ but also high-level processing in frontal regions. Taken together, the results across the three experiments provide novel evidence for the role of MT+ during low-level motion processing during sustained perception and attention. Moreover, these low-level motion processing effects together with the observed high-level processes in frontal-parietal regions provide neural mechanisms for the cognitive processes of sustained perception and attention. / Thesis (PhD) — Boston College, 2012. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Psychology.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_101445
Date January 2012
CreatorsThakral, Preston P.
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.0024 seconds