Return to search

Metamaterials and their applications towards novel imaging technologies

Thesis advisor: Willie J. Padilla / This thesis will describe the implementation of novel imaging applications with electromagnetic metamaterials. Metamaterials have proven to be host to a multitude of interesting physical phenomena and give rich insight electromagnetic theory. This thesis will explore not only the physical theory that give them their interesting electromagnetic properties, but also the many applications of metamaterials. There is a strong need for efficient, low cost imaging solutions, specifically in the longer wavelength regime. While this technology has often been at a standstill due to the lack of natural materials that can effectively operate at these wavelengths, metamaterials have revolutionized the creation of devices to fit these needs. Their scalability has allowed them to access regimes of the electromagnetic spectrum previously unobtainable with natural materials. Along with metamaterials, mathematical techniques can be utilized to make these imaging systems streamlined and effective. Chapter 1 gives a background not only to metamaterials, but also details several parts of general electromagnetic theory that are important for the understanding of metamaterial theory. Chapter 2 discusses one of the most ubiquitous types of metamaterials, the metamaterial absorber, examining not only its physical mechanism, but also its role in metamaterial devices. Chapter 3 gives a theoretical background of imaging at longer wavelengths, specifically single pixel imaging. Chapter 3 also discusses the theory of Compressive Sensing, a mathematical construct that has allowed sampling rates that can exceed the Nyquist Limit. Chapter 4 discusses work that utilizes photoexcitation of a semiconductor to modulate THz radiation. These physical methods were used to create a dynamic THz spatial light modulator and implemented in a single pixel imaging system in the THz regime. Chapter 5 examines active metamaterial modulation through depletion of carriers in a doped semiconductor via application of a bias voltage and its implementation into a similar single pixel imaging system. Additionally, novel techniques are used to access masks generally unobtainable by traditional single pixel imagers. Chapter 6 discusses a completely novel way to encode spatial masks in frequency, rather than time, to create a completely passive millimeter wave imager. Chapter 7 details the use of telecommunication techniques in a novel way to reduce image acquisition time and further streamline the THz single pixel imager. Finally, Chapter 8 will discuss some future outlooks and draw some conclusions from the work that has been done. / Thesis (PhD) — Boston College, 2015. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_104631
Date January 2015
CreatorsWatts, Claire
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.005 seconds