Return to search

Covalent electrophiles for monitoring protein activity and identifying highly reactive residues

Thesis advisor: Eranthie Weerapana / Functional amino acids that play critical roles in catalysis and regulation are known to display elevated nucleophilicity and can be selectively targeted for covalent modification by reactive electrophiles. Chemical-proteomic platforms, such as activity-based protein profiling (ABPP), exploit this reactivity by utilizing chemical probes to covalently modify active-site residues to inform on the functional state of enzymes within complex proteomes. These and other applications rely on the availability of a diverse array of electrophiles and detailed knowledge of the reactivity and amino-acid specificity of these groups. The sulfonyl fluoride activity-based probe (ABP) DAS1 was discovered to label and inhibit both serine proteases and glutathione S-transferases (GSTs). In the case of GSTs, DAS1 covalently bound to a tyrosine residue, despite predicted serine reactivity. Investigation of potential aryl halide electrophiles for ABPP found that chloronitrobenzene RB2 and dichlorotriazine RB7 covalently modify cysteine and lysine residues in target proteins. Applying an existing ABP, iodoacetamide alkyne (IA-alkyne), demonstrated the ability of ABPP to discover novel reactive residues in short open reading frame (sORF)-encoded peptides, as well as previously unannotated cysteine residues on glycolysis enzymes. These studies illustrate the development and characterization of novel electrophiles and demonstrate the application of ABPs to interrogate biological systems. Looking further ahead, the novel electrophiles also provide new tools for the development of covalent inhibitors for treatment of disease. / Thesis (PhD) — Boston College, 2015. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_104879
Date January 2015
CreatorsShannon, David Alexander
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.0026 seconds