Return to search

BN Isosteres of Acenes for Potential Applications in Optoelectronic Devices

Thesis advisor: Shih-Yuan Liu / This dissertation describes progress in the field of polycyclic boron- nitrogen-containing systems, especially for potential application in organic-based optoelectronic devices and hydrogen storage materials. The replacement of a BN unit for a CC unit organic compounds (BN/CC isosterism) can have a profound effect on the electronic structure and even function of a given molecular topology without changing its physical structure very much. Direct comparison between a BN-containing molecule and its direct all-carbon analogue is crucial to establishing the origin of these differences. The synthesis and optoelectronic characterization of boron- nitrogen-containing analogues of naphthalene, anthracene, and tetracene are disclosed. Also examined herein is the aromatic Claisen rearrangement applied to an azaboryl allyl ether. Finally, the chemistry of saturated BN heterocycles, including an iridium-catalyzed transfer dehydrogenation method for synthesizing BN-fused azaborines. Also disclosed is the actual application of these cyclic amine-boranes in supplying hydrogen for a proton exchange membrane (PEM) fuel cell. / Thesis (PhD) — Boston College, 2017. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_107613
Date January 2017
CreatorsIshibashi, Jacob Shotaro Afaga
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.0022 seconds