Return to search

Nonlocal Effects in Plasmonic Nanostructures’ Optical Response and Electron Scattering

Thesis advisor: Krzysztof Kempa / Nonlocal effects, the wavenumber dependence in a medium's response to external disturbance, is treated in this thesis. Numerical computation methods to include nonlocal effects in plasmonic nanostructures’ electromagnetic response are discussed, and applications of plasmonics to a few other fields are elaborated. First, a computation scheme is proposed to extend conventional finite-difference time-domain (FDTD) methods to nonlocal domain. An effective film whose response is derived from Feibelman's d-function formalism is to replace the highly non-uniform metal surfaces in simulations. It successfully produces numerical results of plasmonic resonance shift and field enhancement which agrees with the experimental data to first order. This scheme is still classical, thus very fast compared to the other first principle quantum methods such as density functional theory. Then electron's scattering rate in an effective medium with plasmonic nanostructures embedded-in, in random phase approximation, is developed, with the wavenumber dependence in the medium’s response accounted. Utilizing this calculation scheme of electron’s scattering rate, further specific applications are following. We show by simulation of the plasmonic nanostructures and calculation of the electron scattering rates that hot-electron plasmon-protection (HELPP) effects can protect the extra energy of hot electrons from being dissipated as heat. This can be a prototype of the 3rd generation solar cells. In another application, we investigate the electron polar-optical-phonon (POP) scattering in heavily-doped semiconductors when plasmonic nanostructures are embedded-in. We show that electron-POP scattering can be significantly suppressed compared to that of bulk semiconductors. In the third application, we propose the plasmonic multiple exciton generation (PMEG) scheme, with simulations and calculations, showing that the efficiency of multiple exciton generation in conventional semiconductors could be enhanced significantly with proper designed plasmonic nanostructures embedded-in or attached-adjacent. / Thesis (PhD) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_108243
Date January 2018
CreatorsKong, Jiantao
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author. This work is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0).

Page generated in 0.0022 seconds