Return to search

Spectroscopy of Topological Materials:

Thesis advisor: Kenneth S. Burch / Since their first experimental realizations in the 2000s, bulk electronic topological materials have been one of the most actively studied areas of condensed matter physics. Among the more recently discovered classes of topological materials are the Weyl semimetals whose low energy excitations behave like massless, relativistic particles with well-defined chirality. These material systems display exotic behavior such as surface Fermi arc states, and the chiral anomaly in which parallel magnetic and electric fields lead to an imbalance of left- and right-handed particles. Much of the research into these materials has focused on the electronic properties, but relatively little has been directed towards understanding the vibrational properties of these systems, or of the interplay between the electronic and vibrational degrees of freedom. Further, the technological potential of these materials is still underdeveloped, with the search for physical properties enhanced by the topological nature of these materials being sought after. In this dissertation we address both of these issues. In Chapters III and IV we present temperature dependent Raman investigations of the the Weyl semimetals WP2, NbAs, and TaAs. Measurements of the optical phonon linewidths are used to identify the available phonon decay paths, with ab-initio calculations and group theory used to aid the interpretation of these results. We find that some phonons display linewidths indicative of dominant decay into electron-hole pairs near the Fermi surface, rather than decay into acoustic phonons. In light of these results we discuss the role of phonon-electron coupling in the transport properties of these Weyl semimetals. In Chapter V, we discuss the construction of our "PVIC" setup for the measurement of nonlinear photocurrents. We discuss the experimental capabilities that the system was designed to possess, the operating principles behind key components of the system, and give examples of the operating procedures for using the setup. The penultimate chapter, Chapter VI, presents the results of photocurrent measurements using this setup on the Weyl semimetal TaAs. Through careful analysis of the photocurrent polarization dependence, we identify a colossal bulk photovoltaic effect in this material which exceeds the response displayed by previously studied materials by an order of magnitude. Calculations of the second-order optical conductivity tensor show that this result is consistent with the divergent Berry connection of the Weyl nodes in TaAs. In addition to these topics, Chapter II addresses the results of Raman measurements on thin film heterostructures of the topological insulator Bi2Se3 and the magnetic semiconductor EuS. By investigating the paramagnetic Raman signal in films with different compositions of EuS and Bi2Se3 we provide indirect evidence of charge transfer between the two layers. We also track the evolution of phonon energies with varying film thicknesses on multiple substrates which provides insight into the interfacial strain between layers. We conclude the dissertation in Chapter VII with a summary of the main results from each preceding chapter, and give suggestions for future experiments that further investigate these topics. / Thesis (PhD) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_109002
Date January 2020
CreatorsOsterhoudt, Gavin Barnes
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author. This work is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0).

Page generated in 0.0021 seconds