Return to search

Engineering of Inhalation Aerosols Combining Theophylline and Budesonide

In asthma therapy, the use of theophylline to prevent bronchial spasm and glucocorticoids to decrease inflammation is widely indicated. Apart from the acute asthma attack oral theophylline is treated for chronic therapy in order to minimize inflammation and to enhance the efficiency of corticosteroids and recover steroids’ anti-inflammatory actions in COPD treatment. The preferred application route for respiratory disease treatment is by inhalation, such as dry powder inhalers (DPI) being the delivery systems of first choice. As shown recently, there is an advantageous effect if the drugs are given simultaneously which is caused by a synergistic effect at the same target cell in the lung epithelia. Therefore, it seems rational to combine both substances in one particle. This type of particle has the advantage over a combination product containing both drugs in a physical mixture which occurs rather randomly deposition leading to API segregation and non-dose-uniformity.

Dry powder inhalers (DPIs) is a type of therapeutic pharmaceutical formulations usually present in the solid form. Due to the nature of the solid-state, an understanding of chemical and physical properties must be established for acquiring optimum performance of the active pharmaceutical ingredients (APIs).

In recent year, generation of DPIs is a destructive procedure to meet the micron size. Such processes are inefficient and difficult to control. Moreover, according to current researches on combination APIs formulation, this type of DPIs performed a greater variability in does delivery of each active, leading to poor bioavailability and limit clinical efficient. This result suggest that combination formulations require advanced quality and functionality of particles with suitable physicochemical properties. Hence, in order to production of binary and combination DPIs products, the aim of this study was to develop the spray drying and ultrasonic process for engineering of combination drug particles that will be delivered more efficiently and independently of dose variations to the lung.

Microparticles were produced by spray drying or/and ultrasonic technique. The processing parameters and addition of excipients (polymers) were optimized using a full factorial design such that microparticles were produced in a narrow size range suitable for inhalation. Employing excipients resulted in high saturation environment leading to minimized sphere particles when compared to conventional solvent. Solid state characterization of microparticles using powder x-ray diffraction and differential scanning calorimetry indicated that the particles contained crystalline but no cocrystal. The combination particles comparable to or better than micronized drug when formulated as a powder blended with lactose. It was concluded that the use of HPMC enhanced crystallinity suitable for inhalation; and combination particles improved uniform distribution on the stage of NGI.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/14072
Date January 2014
CreatorsChen, Chi
ContributorsParadkar, Anant R, Grimsey, Ian M., Shao, Qun
PublisherUniversity of Bradford, Faculty of Life Science
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeThesis, doctoral, PhD
Rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.

Page generated in 0.0024 seconds