Return to search

Solar-powered direct contact membrane distillation system: performance and water cost evaluation

Yes / Fresh water is crucial for life, supporting human civilizations and ecosystems, and its
production is one of the global issues. To cope with this issue, we evaluated the performance and cost
of a solar-powered direct contact membrane distillation (DCMD) unit for fresh water production in
Karachi, Pakistan. The solar water heating system (SWHS) was evaluated with the help of a system
advisor model (SAM) tool. The evaluation of the DCMD unit was performed by solving the DCMD
mathematical model through a numerical iterative method in MATLAB software®. For the SWHS,
the simulation results showed that the highest average temperature of 55.05 ◦C and lowest average
temperature of 44.26 ◦C were achieved in May and December, respectively. The capacity factor and
solar fraction of the SWHS were found to be 27.9% and 87%, respectively. An exponential increase
from 11.4 kg/m2
·h to 23.23 kg/m2
·h in permeate flux was observed when increasing the hot water
temperatures from 44 ◦C to 56 ◦C. In the proposed system, a maximum of 279.82 L/day fresh water
was produced in May and a minimum of 146.83 L/day in January. On average, the solar-powered
DCMD system produced 217.66 L/day with a levelized water cost of 23.01 USD/m3 / This research was funded by the Researcher’s Supporting Project Number (RSP-2021/269), King Saud University, Riyadh, Saudi Arabia.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/19310
Date12 December 2022
CreatorsSoomro, M.I., Kumar, S., Ullah, A., Shar, Muhammad A., Alhazaa, A.
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeAbstract, Published version
Rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)., CC-BY

Page generated in 0.0109 seconds