Return to search

Numerical and experimental turbulence studies on shallow open channel flows

Yes / Based on the previous studies, the shallow water equations (SWEs) model was proven to be insufficient to consider the flow turbulence due to its simplified Reynolds-averaged form. In this study, the k-ε model was used to improve the ability of the SWEs model to capture the flow turbulence. In terms of the numerical source terms modelling, the combined k-ε SWEs model was improved by a recently proposed surface gradient upwind method (SGUM) to facilitate the extra turbulent kinetic energy (TKE) source terms in the simulation. The laboratory experiments on both the smooth and rough bed flows were also conducted under the uniform and non-uniform flow conditions for the validation of the proposed numerical model. The numerical simulations were compared to the measured data in the flow velocity, TKE and power spectrum. In the power spectrum comparisons, a well-studied Kolmogorov’s rule was also employed to complement both the numerical and experimental results and to demonstrate that the energy cascade trend was well-held by the investigated flows. / The Major State Basic Research Development Program (973 program) of China (Grant Number 2013CB036402). Open Fund from the State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, China (Grant Number SKLH-OF-1103).

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/8341
Date13 February 2013
CreatorsPu, Jaan H., Shao, Songdong, Huang, Y.
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, Accepted Manuscript
Rights© 2014 Elsevier B.V. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0023 seconds