Return to search

Development of a Small and Inexpensive Terrain Avoidance System for an Unmanned Aerial Vehicle via Potential Function Guidance Algorithm

Despite the first unmanned aerial vehicle (UAV) mission being flown on Aug 22 1849 to bomb Venice UAVs have only recently began to modernize into sophisticated tools beyond simple aerial vehicles. With an increasing number of potential applications, such as cargo delivery, communications, search and rescue, law enforcement, and homeland security, the need for appropriate UAV technology advancement also arose. Here, the development of a low-cost collision avoidance system is described. Hardware was tested and selected based on predetermined constraints and goals. Additionally, a variety of potential functions were explored and assessed at their effectiveness in preventing a collision of a UAV with mountainous terrain. Simulations were conducted using Cloud Cap’s Piccolo autopilot in conjunction with Matlab. Based on these simulations, a set of potential functions was selected to be used with the chosen hardware on subsequent UAV-development-related projects.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1398
Date01 September 2010
CreatorsWallace, Shane Alan
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0022 seconds