An Invasive Grass and a Desert Adapted Rodent: Is There an Effect on Locomotory Performance and Is It Modified by Prior Experience or Familiarization?

Kangaroo rats (Dipodomys spp.) are frequently characterized as keystone species for their role in altering soil characteristics, changing habitat structure through seed consumption and dispersal, and being important primary consumers in their ecosystem. They are arid adapted and known to forage in areas with sparse vegetation. Studies suggests densely vegetated habitat to be unsuitable for kangaroo rats because plants are an impediment to their locomotion and predator avoidance behaviors. This study focuses on an invasive grass, South African Veldt (Ehrharta calycina), that converts landscapes with sparse vegetation into dense grassland habitats, and the Lompoc kangaroo rat (Dipodomys heermanni arenae) that occupies some of those modified landscapes. I explored the proximate effects of Veldt grass by assessing the locomotion of D.h. arenae in three Veldt grass densities. I hypothesized that Veldt grass influences kangaroo rat locomotion, but that performance could also be influenced by experience with the grass. Kangaroo rats with long-term experience with Veldt grass (i.e., those occupying a habitat containing Veldt grass) and short-term experience (two-night habituation in an artificial Veldt grass patch) were tested by pursing the animals through runways of different grass densities and measuring the amount of time spent crossing the runway, amount of time spent stopped, average velocity, and amount of motivation required to initiate and sustain movement. I also monitored habitat use during the two-night habituation period in order to assess habitat utilization among three Veldt grass density habitat patches. I hypothesized that Veldt grass may influence normal habitat utilization patterns in D.h. arenae: specifically, the avoidance of the densest habitats and preference or disproportionate utilization of the most open habitat. I found, when the animals were left alone to forage and explore, they spent significantly more time in habitat patches containing Veldt grass than in a control patch containing zero percent cover. However, in locomotion trials, Veldt grass had a negative effect on locomotory performance. These effects seem to scale with grass density, and were ameliorated to some degree by familiarization: animals from a Veldt grass habitat of origin performed better in novel Veldt grass templates than animals from a non-Veldt habitat of origin; however, both groups performed equally well after two nights’ habituation to the templates. These results suggest that learning occurred in two nights and that it increased the kangaroo rats’ ability to locomote through the grass when pursued. I note that performance studies often do not take into account the amount of motivation employed to initiate and sustain running of the test animals, and suggest that this be considered in future studies. Furthermore, the learning capacity of a kangaroo rat, as well as a community level perspective that considers neutral or even positive trophic interactions among natives and invasives, must be considered in conservation and management decisions in the future.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2628
Date01 October 2015
CreatorsBoag, Camille D
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0027 seconds