Cette thèse est consacrée à un nouveau modèle d'apparence pour la segmentation d'images basée modèle. Ce modèle, dénommé Multimodal Prior Appearance Model (MPAM), est construit à partir d'une classification EM de profils d'intensité combinée avec une méthode automatique pour déterminer le nombre de classes. Contrairement aux approches classiques basées ACP, les profils d'intensité sont classifiés pour chaque maillage et non pour chaque sommet. Tout d'abord, nous décrivons la construction du MPAM à partir d'un ensemble de maillages et d'images. La classification de profils d'intensité et la détermination du nombre de régions par un nouveau critère de sélection sont expliquées. Une régularisation spatiale pour lisser la classification est présentée et la projection de l'information d'apparence sur un maillage de référence est décrite. Ensuite, nous présentons une classification de type spectrale dont le but est d'optimiser la classification des profils pour la segmentation. La représentation de la similitude entre points de données dans l'espace spectral est expliquée. Des résultats comparatifs sur des profils d'intensité du foie à partir d'images tomodensitométriques montrent que notre approche surpasse les modèles basés ACP. Finalement, nous présentons des méthodes d'analyse pour les structures des membres inférieurs à partir d'images IRM. D'abord, notre technique pour créer des modèles spécifiques aux sujets pour des simulations cinématiques des membres inférieurs est décrite. Puis, la performance de modèles statistiques est comparée dans un contexte de segmentation des os lorsqu'un faible ensemble de données est disponible.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00575796 |
Date | 17 January 2011 |
Creators | Chung, François |
Publisher | École Nationale Supérieure des Mines de Paris |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0027 seconds