Cette thèse est divisée en trois parties. Dans la prèmiere partie nous décrivons les systèmes dynamiques que l'on considère tout au long de la thèse. Nous donnons aussi des résultats connus sur les fluctuations d'observables dans les systèmes dynamiques tels comme la théorème central limite, les grands déviations et les inégalités de concentration. La deuxième partie de cette thèse est consacrée aux systèmes dynamiques perturbés par un bruit observationnel. Nous démontrons que si un système dynamique satisfait une inégalité de concentration alors le système perturbé satisfait lui aussi une inégalité de concentration adéquate. Ensuite nous appliquons ces inégalités pour obtenir des bornes sur la taille des fluctuations d'observables bruitées. Nous considérons comme observables la fonction d'auto-corrélation, la mesure empirique, l'estimateur à noyau de la densité de la mesure invariante et la dimension de corrélation. Nous étudions ensuite les travaux de S. Lalley sur le problème de débruitage d'une série temporelle. Etant donné une série temporelle générée par un système dynamique chaotique bruité, il est effectivement possible d'éliminer le bruit en moyenne en utilissant l'algorithme de Lalley. Un chapitre de cette thèse est consacré à la preuve de ce théorème. Nous finissons la deuxième partie avec une quête numérique pour les meilleurs paramètres de l'algorithme de Lalley. Dans la troisième partie, nous étudions le problème de l'estimation de l'entropie pour des mesures de Gibbs unidimensionnelles. Nous étudions les propriétés de deux estimateurs de l'entropie. Le premier est basé sur les fréquences des blocs typiques observés. Le second est basé sur les temps d'apparition de blocs typiques. Nous appliquons des inégalités de concentrations pour obtenir un contrôle sur les fluctuations de ces estimateurs.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00734697 |
Date | 21 September 2012 |
Creators | Maldonado, Cesar |
Publisher | Ecole Polytechnique X |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0087 seconds