Return to search

Interférométrie atomique avec l'atome de lithium : analyse théorique et construction d'un interféromètre, applications.

Cette thèse présente les études préparatoires à la construction d'un interferometre atomique de Mach-Zehnder, utilisant le lithium. Dans cet interferometre, les faisceaux qui interfèrent sont spatialement séparés sans que l'état interne des atomes soit modifié. Les séparatrices sont des réseaux de diffraction formés d'ondes laser stationnaires et quasi-résonnantes. Nous expliquons le processus de diffraction dans différents régimes, en utilisant les fonctions de Bloch pour représenter l'onde atomique à l'intérieur de l'onde laser. Dautre part, nous avons développé un modèle presque totalement analytique de la propagation des ondes atomiques dans les interféromètres de Mach-Zehnder, pour étudier le contraste du signal d'interférences de manière très générale : cas des réseaux d'amplitude ou des réseaux de phase, effets des faisceaux parasites, effets des principaux déréglages, cas monochromatique ou faiblement polychromatique. Enfin, nous discutons trois mesures interférométriques qui nous semblent particulièrement intéressantes. L'indice de réfraction d'un gaz pour une onde atomique est étudiée en grand détail. Les autres expériences proposées concernent les propriétés électriques de l'atome de lithium. Nous discutons les limites ultimes de la mesure de la polarisabilité électrique statique du lithium par interférometrie atomique. Nous montrons ensuite comment on peut, en modifiant la configuration expérimentale, mesurer l'éventuelle charge de l'atome de lithium, avec une très grande sensibilité, comparable à celle des expériences antérieures, à condition d'utiliser des atomes ralentis.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00003602
Date17 December 1999
CreatorsChampenois, Caroline
PublisherUniversité Paul Sabatier - Toulouse III
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds