Return to search

Méthodologie pour l'analyse et la commande des systèmes à retards

Cette thèse traite de méthodologie pour l'analyse et la commande de systèmes linéaires à retards. On s'intéresse plus particulièrement à trois techniques complémentaires. La première est l'approche géométrique. Les systèmes linéaires à retards peuvent se modéliser par un quadruplet de matrices à coefficients sur un anneau. L'approche géométrique consiste alors à étudier un système avec les propriétés des modules de cet anneau. Dans cette partie, on développe une analyse exhaustive des notions d'invariance de modules, en vue d'applications en commande. Des relations logiques entre différentes formes d'invariance contrôlée et d'invariance conditionnelle sont établies. La deuxième approche étudiée dans cette thèse est algébrique. Pour celle-ci, l'utilisation de pseudo-polynômes, qui sont des opérateurs faisant appel à un nombre fini de dérivateurs, de retards ponctuels et distribués, se révèle fondamentale. On utilise plus précisèment l'anneau des fractions propres et stables de pseudo-polynômes pour résoudre le problème de stabilisation d'un système. Ce problème débouche sur une paramétrisation des compensateurs stabilisants et des matrices de transfert en boucle fermée. On étudie alors divers problèmes de commande, comme le rejet de perturbation, l'atténuation de perturbation, la poursuite de modèle exacte ou approchée, ou la commande optimale au sens L1. Enfin, la troisième et dernière approche est le calcul numérique. Dans cette partie, on utilise le calcul par intervalles pour résoudre des problèmes numériques difficiles, comme la stabilité robuste, la stabilisation, ou encore le respect d'un gabarit de performances et de robustesse.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00149948
Date16 November 2006
CreatorsDi Loreto, Michaël
PublisherEcole centrale de nantes - ECN, Université de Nantes
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0026 seconds