INVERSION DES MODELES STOCHASTIQUES DE MILIEUX HETEROGENES

La problématique du calage d'historique en ingénierie de réservoir, c'est-à-dire le calage des modèles géostatistiques aux données de production, est un problème inverse mal posé. Dans un cadre bayésien, sa résolution suppose l'inférence de la distribution de probabilité du modèle géostatistique conditionné aux données dynamiques, rendant compte à la fois de l'a priori géologique, exprimé dans le modèle géostatistique, et de l'adéquation aux données de production. Typiquement, la résolution de ce problème passe par la génération d'un ensemble de réalisations calées aux données, échantillon représentatif de cette distribution. Les modèles géostatistiques sont en général discrétisés sur des grilles de plusieurs centaines de milliers, voire des millions de blocs ; les approches classiques tentent de résoudre le problème inverse en considérant l'ensemble des blocs comme paramètres du modèle. Sa dimension est alors considérable et les méthodes d'échantillonnages deviennent impraticables sur un cas réel. Il convient alors de choisir une paramétrisation susceptible de réduire la dimension du problème. Dans la première partie de cette thèse, nous présentons une méthode de paramétrisation optimale des modèles géostatistiques basés sur les champs aléatoires gaussiens, à partir de leur décomposition de Karhunen-Loève (KL). Nous en décrivons les fondements théo- riques, puis, sur des applications aux modèles de champs aléatoires gaussiens courants en géostatistique, selon des critères d'abord statistiques puis hydrodynamiques, nous quantifions la réduction de la dimension du problème offerte par cette paramétrisation. Dans la seconde partie, nous présentons les principes des méthodes de Monte-Carlo par Chaînes de Markov (MCMC) et les défauts des méthodes classiques pour la résolution du problème inverse dans le cadre bayésien. Nous développons alors l'approche par chaînes de Markov en interaction dont nous exposons les avantages. Enfin, les résultats obtenus par l'emploi conjoint de ces deux méthodes sont présentés dans deux articles. Une approche différente, passant par l'emploi de méthodes d'analyse de sensibilité, est également décrite dans un troisième article.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00395528
Date19 December 2008
CreatorsRomary, Thomas
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds