Return to search

Planification et re-planification de mouvements sûrs pour les robots humanoïdes.

Ces travaux de thèse traitent de la génération de mouvements optimaux pour les robots humanoïdes. La plupart des méthodes de génération de mouvements sont inspirées de celles utilisées pour les robots manipulateurs. Elles se basent sur l'utilisation d'un algorithme d'optimisation qui nécessite une paramétrisation du mouvement ainsi qu'une discrétisation temporelle des contraintes définissant les limites physiques du robot. Nous montrons qu'une discrétisation faite à partir d'une grille temporelle peut compromettre la sécurité et l'intégrité des robots. De ce fait, nous proposons une nouvelle méthode de discrétisation garantie qui calcule les extrema des contraintes sur des intervalles de temps couvrant toute la durée du mouvement. Cette méthode de discrétisation pour le calcul des contraintes, nécessite un temps de calcul important. Nous avons, donc, développé une méthode hybride qui assure la validité des contraintes pour des temps de calcul comparables à celui des méthodes classiques. Cette méthode nous permet ainsi de générer une base de données de mouvements que nous avons utilisée lors d'une expérimentation de suivi de cible mobile. Nous sommes, donc, en mesure de générer un mouvement optimal parfaitement adapté à une configuration de l'environnement. Cependant, aucune méthode ne dispose d'un temps de calcul qui permette de réagir rapidement à une modification de l'environnement. Par conséquent, nous présentons une méthode de re-planification qui permet de générer un nouveau mouvement à partir d'un mouvement optimal calculé précédemment. Pour cela, nous calculons, hors-ligne, un sous-ensemble faisable autour des paramètres du mouvement qui vérifient les limites du robot. La re-planification consiste, alors, à chercher, en ligne, dans ce sous-ensemble les paramètres qui satisfont la nouvelle configuration de l'environnement. Nous avons testé la méthode de re-planification avec un mouvement de coup de pied où la position de la balle varie et nous obtenons un mouvement adapté en 1.5 s de temps de calcul.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00431302
Date21 October 2009
CreatorsLengagne, Sebastien
PublisherUniversité Montpellier II - Sciences et Techniques du Languedoc
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0013 seconds