Return to search

Techniques d'optimisation déterministe et stochastique pour la résolution de problèmes difficiles en cryptologie

Cette thèse s'articule autour des fonctions booléennes liées à la cryptographie et la cryptanalyse de certains schémas d'identification. Les fonctions booléennes possèdent des propriétés algébriques fréquemment utilisées en cryptographie pour constituer des S-Boxes (tables de substitution).Nous nous intéressons, en particulier, à la construction de deux types de fonctions : les fonctions courbes et les fonctions équilibrées de haut degré de non-linéarité.Concernant la cryptanalyse, nous nous focalisons sur les techniques d'identification basées sur les problèmes de perceptron et de perceptron permuté. Nous réalisons une nouvelle attaque sur le schéma afin de décider de sa faisabilité.Nous développons ici des nouvelles méthodes combinant l'approche déterministe DCA (Difference of Convex functions Algorithm) et heuristique (recuit simulé, entropie croisée, algorithmes génétiques...). Cette approche hybride, utilisée dans toute cette thèse, est motivée par les résultats intéressants de la programmation DC.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00557912
Date05 July 2010
CreatorsBouallagui, Sarra
PublisherINSA de Rouen
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0157 seconds