Return to search

Détection d'un objet immergé dans un fluide

Cette thèse s'inscrit dans le domaine des mathématiques appelé optimisation de formes. Plus précisément, nous étudions ici un problème inverse de type détection à l'aide du calcul de forme et de l'analyse asymptotique : l'objectif est de localiser un objet immergé dans un fluide visqueux, incompressible et stationnaire. Les questions principales qui ont motivé ce travail sont les suivantes : peut-on détecter un objet immergé dans un fluide à partir d'une mesure effectuée à la surface du fluide ? Peut-on reconstruire numériquement cet objet, i.e. approcher sa position et sa forme, à partir de cette mesure ? Peut-on connaître le nombre d'objets présents dans le fluide en utilisant cette mesure ? Pour répondre à ces questions, le problème inverse est analysé comme un problème d'optimisation en minimisant une fonctionnelle coût, la variable étant la forme inconnue. Deux différentes approches sont considérées dans ce travail : l'optimisation géométrique (à l'aide des dérivées de forme et du gradient de forme) et l'optimisation topologique (à l'aide d'un développement asymptotique et du "gradient" topologique). Dans un premier temps, un cadre mathématique est mis en place pour démontrer l'existence des dérivées de forme d'ordre un et deux pour les problèmes de détection d'inclusions. Le problème inverse considéré est ensuite analysé à l'aide de l'optimisation géométrique de forme : un résultat d'identifiabilité est montré, le gradient de forme de plusieurs types de fonctionnelles de forme est caractérisé et l'instabilité de ce problème inverse est enfin démontrée. Ces résultats théoriques sont alors utilisés pour reconstruire numériquement des objets immergés dans un fluide à l'aide d'un algorithme de gradient régularisé par une méthode de projection. Enfin, la localisation de petites inclusions dans un fluide est étudiée à l'aide de l'optimisation topologique pour une fonctionnelle de forme de Kohn-Vogelius. L'expression théorique de la dérivée topologique est finalement utilisée pour déterminer numériquement le nombre et la localisation de petits obstacles immergés dans un fluide à l'aide d'un algorithme de gradient topologique. Les limites effectives de cette approche sont explorées : la pénétration reste faible dans ce problème stationnaire.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00716902
Date29 June 2012
CreatorsCaubet, Fabien
PublisherUniversité de Pau et des Pays de l'Adour
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds