Calcul statistique sur les variétés de forme pour la l'analyse et la reconnaissance de visage 3D

Dans cette thèse, nous proposons un cadre Riemannien pour comparer, déformer, calculer des statistiques et organiser de manière hiérarchique des surfaces faciales. Nous appliquons ce cadre à la biométrie faciale 3D où les défis sont les expressions faciales, les variations de la pose et les occultations du visage par des objets externes. Les surfaces faciales sont repr'esentées par un ensemble de courbes de niveaux et de courbes radiales. L'ensemble des courbes fermées (de niveau) constitue une sous-variété non-linéaire de dimension infinie et est utilisé pour représenter le nez, la partie la plus stable du visage. La surface faciale est présentée, par ailleurs, par une collection indexée de courbes radiales. Dans ce cas, le calcul se simplifie et l'espace des formes des courbes ouvertes se ramène à une hyper sphère de l'espace de Hilbert. La comparaison dans l'espace des formes se fait via une métrique élastique afin de faire face aux d'eformations non-isométriques (ne conservant pas les longueurs) des surfaces faciales. Nous proposons des algorithmes pour calculer les moyennes, les vecteurs propres dans ces variétés non-linéaires et l'estimation des parties manquantes des surfaces faciales 3D. L'approche présentée dans cette thèse a été validée sur des Benchmarks connus (FRGCv2, GAVAB, BOSPHORUS) et obtenu des résultats compétitifs par rapport aux méthodes de l'état de l'art.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00728009
Date04 July 2011
CreatorsDrira, Hassen
PublisherUniversité des Sciences et Technologie de Lille - Lille I
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0059 seconds