Return to search

Transport turbulent et néoclassique de quantité de mouvement toroïdale dans les plasmas de tokamak

L'objectif de la fusion par confinement magnétique, et notamment du tokamak, est de produire de l'énergie à partir des réactions de fusion nucléaire, dans un plasma à faible densité et haute température. Expérimentalement, une amélioration de la performance des tokamaks a été observée en présence de rotation toroïdale. Or, les sources extérieurs de quantité de mouvement seront très limitées dans les futurs tokamaks, et notamment ITER. Une compréhension de la physique de la génération intrinsèque de rotation toroïdale permettrait donc de prédire les profils de rotation dans les expériences futures. Parmi les mécanismes envisagés, on s'intéresse ici à la génération de rotation par la turbulence, qui domine le transport de la chaleur dans les tokamaks. Les plasmas de fusion étant faiblement collisionnels, la modélisation de cette turbulence suppose un modèle cinétique décrivant la fonction de distribution des particules dans l'espace des phases à six dimensions (position et vitesse). Cependant, ce modèle peut être réduit à cinq dimensions pour des fréquences inférieures à la fréquence cyclotronique des particules. Le modèle gyrocinétique qui découle de cette approximation est alors accessible avec les ressources numériques actuelles. Les travaux présentés portent sur l'étude du transport de quantité de mouvement toroïdale dans les plasmas de tokamak, dans le cadre du modèle gyrocinétique. Dans un premier temps, nous montrons que ce modèle réduit permet une description précise du transport de quantité de mouvement en dérivant une équation locale de conservation. Cette équation est vérifiée numériquement à l'aide du code gyrocinétique GYSELA. Ensuite, nous montrons comment la turbulence électrostatique peut briser l'axisymétrie du système, générant ainsi de la rotation toroïdale. Un lien fort entre transport de chaleur et transport de quantité de mouvement est mis en évidence, les deux présentant des avalanches à grande échelle. La dynamique du transport turbulent est analysée en détail et, bien que l'estimation standard gyro-Bohm soit vérifiée en moyenne, des phénomènes non-diffusifs sont observés. L'effet des écoulements de bord du plasma sur la rotation toroïdale dans le coeur est étudié en modifiant les conditions aux bords dans le code GYSELA. Enfin, le champ magnétique d'équilibre, qui n'est pas rigoureusement axisymétrique, peut également participer à la génération de rotation toroïdale, via des mécanismes purement collisionnels. Dans un tokamak, cet effet est suffisamment important pour entrer en compétition avec la rotation générée par la turbulence électrostatique.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00777996
Date30 October 2012
CreatorsAbiteboul, Jeremie
PublisherAix-Marseille Université
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds