Apprentissage de Représentations Visuelles Profondes

Les avancées récentes en apprentissage profond et en traitement d'image présentent l'opportunité d'unifier ces deux champs de recherche complémentaires pour une meilleure résolution du problème de classification d'images dans des catégories sémantiques. L'apprentissage profond apporte au traitement d'image le pouvoir de représentation nécessaire à l'amélioration des performances des méthodes de classification d'images. Cette thèse propose de nouvelles méthodes d'apprentissage de représentations visuelles profondes pour la résolution de cette tache. L'apprentissage profond a été abordé sous deux angles. D'abord nous nous sommes intéressés à l'apprentissage non supervisé de représentations latentes ayant certaines propriétés à partir de données en entrée. Il s'agit ici d'intégrer une connaissance à priori, à travers un terme de régularisation, dans l'apprentissage d'une machine de Boltzmann restreinte. Nous proposons plusieurs formes de régularisation qui induisent différentes propriétés telles que la parcimonie, la sélectivité et l'organisation en structure topographique. Le second aspect consiste au passage graduel de l'apprentissage non supervisé à l'apprentissage supervisé de réseaux profonds. Ce but est réalisé par l'introduction sous forme de supervision, d'une information relative à la catégorie sémantique. Deux nouvelles méthodes sont proposées. Le premier est basé sur une régularisation top-down de réseaux de croyance profonds à base de machines des Boltzmann restreintes. Le second optimise un cout intégrant un critère de reconstruction et un critère de supervision pour l'entrainement d'autoencodeurs profonds. Les méthodes proposées ont été appliquées au problème de classification d'images. Nous avons adopté le modèle sac-de-mots comme modèle de base parce qu'il offre d'importantes possibilités grâce à l'utilisation de descripteurs locaux robustes et de pooling par pyramides spatiales qui prennent en compte l'information spatiale de l'image. L'apprentissage profonds avec agrégation spatiale est utilisé pour apprendre un dictionnaire hiérarchique pour l'encodage de représentations visuelles de niveau intermédiaire. Cette méthode donne des résultats très compétitifs en classification de scènes et d'images. Les dictionnaires visuels appris contiennent diverses informations non-redondantes ayant une structure spatiale cohérente. L'inférence est aussi très rapide. Nous avons par la suite optimisé l'étape de pooling sur la base du codage produit par le dictionnaire hiérarchique précédemment appris en introduisant introduit une nouvelle paramétrisation dérivable de l'opération de pooling qui permet un apprentissage par descente de gradient utilisant l'algorithme de rétro-propagation. Ceci est la première tentative d'unification de l'apprentissage profond et du modèle de sac de mots. Bien que cette fusion puisse sembler évidente, l'union de plusieurs aspects de l'apprentissage profond de représentations visuelles demeure une tache complexe à bien des égards et requiert encore un effort de recherche important.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00948376
Date12 July 2013
CreatorsGoh, Hanlin
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds