Return to search

Non-collinear magnetoeletronics in single wall carbon nanotubes

Recent developments in the field of nanotechnology allowed the access to adequate length scale necesary to closely investigate spins and opened large prospects of using electrons spin degree of freedom in new generation electronic devices. This have lead to the development of a vibrant field dubbed spintronics.Here, we present experiments that combine two very promising materials: namely cardon nanotubes and palladium-nickel (PdNi), with the purpose to manipulate the electronic spin both in the classical and in the quantum regime. We implement a quantum dot connected to two non-collinear ferromagnetic leads that acts as a spin-valve device. The versatility of carbon nanotubes to fabricate quantum dots when connected to PdNi electrodes via tunneling barriers is combined with the particular transversal anisotropy of the PdNi when shaped in nanometric stripes.For devices exploiting actively the electronic spin, however control over classical or quantum spin rotations has still to be achieved. A detailed understanding of the magnetic characteristics of PdxNi 100-x alloy is crucial both for understanding the switching characteristics of such the spin-valve device and for optimizing its electronic properties. We present a magnetic study of Pd20Ni80 and Pd90Ni10 nanostripes by means of extraordinary Hall effect measurements, at low temperature, for various dimensions, thicknesses and capping films. In the case of Pd20Ni80, this experiment is a first at low temperature.The CNT-based device proposed here was tested both in linear and nonlinear transportregimes. While the linear spin dependent transport displays the usual signatures of electronicconfinement, the finite bias magnetoresistance displays an impressive magnetoresistance antisymmetric reversal in contrast with the linear regime. This effect can only be understood if electronic interactions are considered. It is accompanied by a linear dispersion of the zeromagnetoresistance point in the bias-field plane. Simulations based on a proposed model confirm a current induced spin precession, electrically tunable due to the quantum nature ofthe device.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00976618
Date17 December 2013
CreatorsCrisan, Alina Dora
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0021 seconds