Return to search

Mesenchymal potentials of the trunk neural crest cells

The neural crest (NC) derives from the dorsal borders of the vertebrate neural tube. During development, the NC cells migrate and contribute to the formation of different tissues and organs. Along the anteroposterior axis, the NC gives rise to neurons and glia of the peripheral nervous system and to melanocytes. Furthermore, the cephalic NC yields mesenchymal tissues, which form all facial cartilages and bones, the large part of skull, facial dermis, fat cells and smooth muscle cells in the head. In the trunk of amniotes Vertebrates, these tissues are derived from the mesoderm, not from the NC. In lower Vertebrates, however, the trunk NC generates some mesenchymal tissues, such as in the dorsal fins of zebrafish. The question therefore is raised whether the ability of the NC to produce mesenchymal cells was totally lost in the trunk of amniote Vertebrates during evolution, or if it can still be achieved under specific conditions. This work is interested in uncovering the mesenchymal potential of the avian trunk NC, with special interest in the differentiation into osteoblasts and adipocytes.Our experimental approach was to examine the skeletogenic and adipogenic differentiation potentials of quail trunk NC cells after in vitro culture. Cell differentiation was evidenced by the analysis of lineage-specific genes and markers using in situ hybridization (ISH), immunocytochemistry and RT-PCR. The established culture conditions allowed observation of both skeletogenesis and adipogenesis. Osteogenesis was initially characterized by expression of Runx2, the first transcription factor specific of the osteoprogenitors, which was detected by ISH from 5 days of culture. Later, we observed osteoblast maturation, with the expression of collagen1 protein, osteopontin mRNA and alkaline phosphatase mRNA, until the bone matrix mineralization stage. The trunk NC cells also underwent chondrogenesis, as demonstrated by Sox9, aggrecan and collagen10 mRNA expression, and Alcian blue staining. The observation of the mineralized areas and chondrogenesis suggested that the trunk NC cells in vitro are able to perform endochondral and membranous ossifications. In same culture conditions, the cells differentiated also into adipocytes, identified from 10 days of culture by Oil Red O staining. The mRNAs of the CEBP, PPAR and FABP4 adipogenic markers were detected by RT-PCR from 3 days of culture. For the characterization of bone and adipocyte progenitors, we evaluated the differentiation potential of individual trunk NC cells. The phenotypic analysis of these clonal cultures showed that 76% of the cells generated Runx2-positive osteoblasts. Moreover, most of the clone-forming trunk NC cells were multipotent progenitors endowed with both neural and osteogenic potentials. Furthermore, in another clonal culture condition, adipocytes were found in 35.3% of the clones, and approximately half of them also contained glial and/or melanogenic cells.These results show that the trunk NC cells in vitro are able to differentiate not only in their classical derivatives found in vivo (melanocytes, neurons and glial cells), but also in mesenchymal phenotypes, including adipocytes and osteoblasts. Importantly, as in cephalic NC cells, mesenchymal phenotypes differentiated from multipotent progenitor cells, suggesting that, during evolution, the NC stem cells intended for both mesenchymal and neural fates, had the expression of their mesenchymal potential inhibited in the trunk. Thus, although at the dormant state and not expressed in vivo, a significant mesenchymal potential is present in the trunk NC cells of amniotes Vertebrates and can be disclosed in vitro

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00982495
Date24 April 2012
CreatorsDe Mattos Coelho Aguiar, Juliana
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0055 seconds