Méthodes probabilistes pour l'évaluation de risques en production industrielle.

Dans un contexte industriel compétitif, une prévision fiable du rendement est une information primordiale pour déterminer avec précision les coûts de production et donc assurer la rentabilité d'un projet. La quantification des risques en amont du démarrage d'un processus de fabrication permet des prises de décision efficaces. Durant la phase de conception d'un produit, les efforts de développement peuvent être alors identifiés et ordonnés par priorité. Afin de mesurer l'impact des fluctuations des procédés industriels sur les performances d'un produit donné, la construction de la probabilité du risque défaillance est développée dans cette thèse. La relation complexe entre le processus de fabrication et le produit conçu (non linéaire, caractéristiques multi-modales...) est assurée par une méthode de régression bayésienne. Un champ aléatoire représente ainsi, pour chaque configuration du produit, l'information disponible concernant la probabilité de défaillance. Après une présentation du modèle gaussien, nous décrivons un raisonnement bayésien évitant le choix a priori des paramètres de position et d'échelle. Dans notre modèle, le mélange gaussien a priori, conditionné par des données mesurées (ou calculées), conduit à un posterior caractérisé par une distribution de Student multivariée. La nature probabiliste du modèle est alors exploitée pour construire une probabilité de risque de défaillance, définie comme une variable aléatoire. Pour ce faire, notre approche consiste à considérer comme aléatoire toutes les données inconnues, inaccessibles ou fluctuantes. Afin de propager les incertitudes, une approche basée sur les ensembles flous fournit un cadre approprié pour la mise en oeuvre d'un modèle bayésien imitant le raisonnement d'expert. L'idée sous-jacente est d'ajouter un minimum d'information a priori dans le modèle du risque de défaillance. Notre méthodologie a été mise en oeuvre dans un logiciel nommé GoNoGo. La pertinence de cette approche est illustrée par des exemples théoriques ainsi que sur un exemple réel provenant de la société STMicroelectronics.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00982740
Date16 April 2014
CreatorsOger, Julie
PublisherUniversité François Rabelais - Tours
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0678 seconds